Mutations in the zebrafish unmask shared regulatory pathways controlling the development of catecholaminergic neurons.
نویسندگان
چکیده
The mechanism by which pluripotent progenitors give rise to distinct classes of mature neurons in vertebrates is not well understood. To address this issue we undertook a genetic screen for mutations which affect the commitment and differentiation of catecholaminergic (CA) [dopaminergic (DA), noradrenergic (NA), and adrenergic] neurons in the zebrafish, Danio rerio. The identified mutations constitute five complementation groups. motionless and foggy affect the number and differentiation state of hypothalamic DA, telencephalic DA, retinal DA, locus coeruleus (LC) NA, and sympathetic NA neurons. The too few mutation leads to a specific reduction in the number of hypothalamic DA neurons. no soul lacks arch-associated NA cells and has defects in pharyngeal arches, and soulless lacks both arch-associated and LC cell groups. Our analyses suggest that the genes defined by these mutations regulate different steps in the differentiation of multipotent CA progenitors. They further reveal an underlying universal mechanism for the control of CA cell fates, which involve combinatorial usage of regulatory genes.
منابع مشابه
Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish
The catecholamines dopamine and noradrenaline provide some of the major neuromodulatory systems with far-ranging projections in the brain and spinal cord of vertebrates. However, development of these complex systems is only partially understood. Zebrafish provide an excellent model for genetic analysis of neuronal specification and axonal projections in vertebrates. Here, we analyze the ontogen...
متن کاملGenetic analysis of the roles of Hh, FGF8, and nodal signaling during catecholaminergic system development in the zebrafish brain.
CNS catecholaminergic neurons can be distinguished by their neurotransmitters as dopaminergic or noradrenergic and form in distinct regions at characteristic embryonic stages. This raises the question of whether all catecholaminergic neurons of one transmitter type are specified by the same set of factors. Therefore, we performed genetic analyses to define signaling requirements for the specifi...
متن کاملHuman cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish
To assess the effects during cardiac development of mutations that cause human cardiomyopathy, we modeled a sarcomeric gene mutation in the embryonic zebrafish. We designed morpholino antisense oligonucleotides targeting the exon 13 splice donor site in the zebrafish cardiac troponin T (tnnt2) gene, in order to precisely recapitulate a human TNNT2 mutation that causes hypertrophic cardiomyopath...
متن کاملExpression of the paralogous tyrosine hydroxylase encoding genes th1 and th2 reveals the full complement of dopaminergic and noradrenergic neurons in zebrafish larval and juvenile brain
The development of dopaminergic and noradrenergic neurons has received much attention based on their modulatory effect on many behavioral circuits and their involvement in neurodegenerative diseases. The zebrafish (Danio rerio) has emerged as a new model organism with which to study development and function of catecholaminergic systems. Tyrosine hydroxylase is the entry enzyme into catecholamin...
متن کاملThe Role of miRNA Dysregulation in Thyroid Cancer Development by Targeting the Main Signaling Pathways
Thyroid cancer is one of the most common malignancies of endocrine glands, causing carcinomas, such as papillary, follicular, medullary, and anaplastic thyroid carcinomas. Due to the significance of thyroid carcinomas, identification of the main signaling pathways and the affecting mutations has been considered by researchers. Further studies on the dysregulation of oncogenes in signaling path...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 208 2 شماره
صفحات -
تاریخ انتشار 1999